Life after Gabis

[Columbia UMS] March 17, 2021]

Based in part on material of Leo Goldmankher, Leo C.Stein

We start with the famous Abel-Ruffini theorem. Thm (R. 19/11 1799, Abel 1824) There is no for mula for the roots of a general 5^{th} degree polynomial involving only arithmetic operations (+,-,,-) and radicels - See a modern proof due to Arnol'd Today: that uses topology in place of (Talois thy - Dee how complex dynamics can show that even approximate solutions to polynomials one inherently constrained.

The spaces Polyn C, Rootn C
Two natural parametrizations of n th degree monic Polynomials/C: $P(z) = z^{n} + q_{n-1}z + +q_{1}z + q_{0}$
1) Polyn C: Parametrize the coefficients.
$(a_{0,},a_{n-1}) \longrightarrow Z^{n} + a_{n-1}Z^{n-1} + \dots + a_{1}Z + a_{0}$
(2) Root, C: Parametrize the <u>roots</u> : $(r_{1},, r_{n}) \longmapsto (z-r_{1})(z-r_{n})$
Note both Polyn C, Root, $C \equiv C^{n}$.

Recall that you can express the coefficients as Symmetric Functions of the roots, eg. $a_{n-1} = -\Sigma r_{ij} \quad a_0 = (-1)^n r_{i} - -r_{n}$ So there is a map iti I. Rostn C -> Polyn C If ris ..., ra are all distinct, then I has degree n! (The n! Points (ro(1), --, ro(n)) for ore Sn are distinct in RootnC, but map to same PE Blync). Abstractly, root Finding is about finding a map the other way: Polyn C -> Rootn C.

Arnol'd's Argument Warmup level 1: NZ Look at applet for n=2. We see there are loops in Polya C that do not lift to book in Rootz C. (only puths). This tells is some thing about solving guidratics: There is no formula involving continuous single-valued functions that can pick out one root of a guadratic.

Warmup level 2: For cubics, a single radicul work ob! Suppose we had a cubic formula that involved only one radical: José Here Jujfz are continous functions. Let's examine what happens as we move palong aloop. Applet: Can easily realize (123) as a Permutation. By "reverse-engineering", can make (12) als In fact, given any permutation or of the roots, can build a loop of in Bolyn C that realizes it!

Commutators: Given patho &1, 82,
The commutator is the oncatenation
Vi V2 Ji Jz, where I is & ron brokened
Let's look at how commutators would behave under under calls.
Roby3C
See in applet: permetation is (123)) where K counts the winding number of X around O.
BA observe that any commutator has $WN=0$.

Picture: Suppose we had a Cubic formula By C J J2 Then as we moved P around root#2 any comme tartar - loop we'd see the routs complete bop, not a path: But, notice [V123, V12] indres [(123), (12] (132) So if you do this commentator-loop You fail to 134!

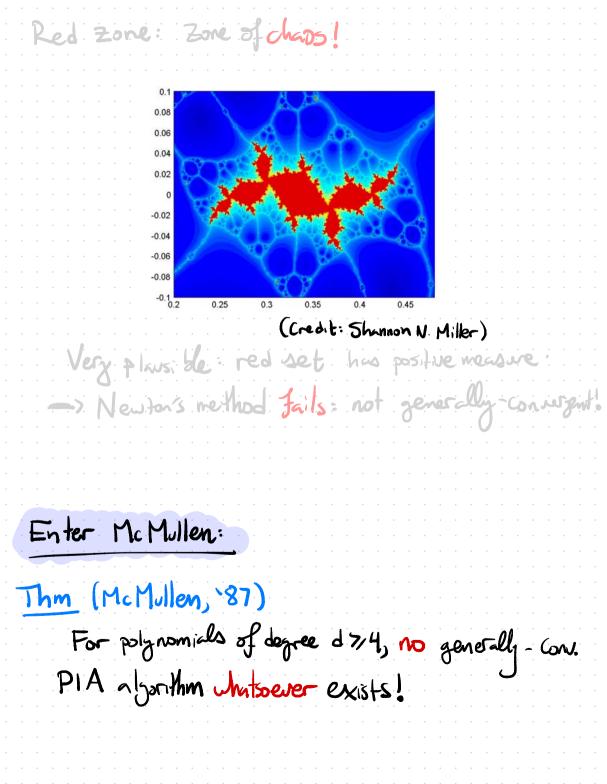
Quintics: Just an elaboration of same ideas. Notice [(12345),(135)]= (241)(153) =(15324), 5-cy cles are commutators! => Any quintic formula in radicals would need nested radicals. Recall: 3-cycles are commutators, too. So can write (12345) as [[1, 1], [03, 14]], i.e. a double commutator. => Any quintic formula in radicals would need three layers of nesting. (Each of [8,82], [8,30,] themselves lift as bops inter the first 2. So [[x, x,], [x, x,]] Survives a double radical.)

We wrote 5-cycle = [5-cycle, 3-cycle]. See: [(123), (14s)] = (245)(154) = (124)So: 3- cycle = [3-cycle, 3-cycle]. So now be can repeat ad inf. : A 5-cycle can be expressed as an n-fold iterated commutator for any n! => Any quintic formula requires >n nested radicals, for all n! => Noquintic formula in radicals!

Part 2: Approximations	
In practice, often an $p(z)$ is good enough	approximate Solution
Recall Newton's me thou	· · · · · · · · · · · · · · · · · · ·
Instead of solving P(2) the tangent line to p	, Solve $T_{2o}(z)$, at $z=zo$, then iterate.
P(2) Tzo	(z) $Z_1 = Z_0 - \frac{P(Z_0)}{P'(Z_0)}$
· · · · · · · · · · · · · · · · · · ·	. .

Newton's method is a prely-iterative algorithm: (PIA) Given P(z), obtain a self-map of \hat{C} : $R_p(z) = Z - \frac{P(z)}{P'(z)}$ A PIA is generally -consigent if for a full-measure set of initial guesses zo, the sequence $\{z_0, R_p(z_0), R_p^2(z_0), \dots, J \rightarrow \lambda\}$ a rost of P. Exercise/Fact: Newton's me thad is generally -Convergent for guadratics.

What about cubics?	•
In applet: Examine $P_{\lambda}(z) = (z-\lambda)(z+\lambda)(z-1)$)
J_{0} , $\lambda = 0.589 + .605 i$.	•
See initial greenes $z_0 = 0 \rightarrow 1$ $z_0 = 0.1 \rightarrow 1$ $z_0 = 0.2 \rightarrow 1$ $z_0 = 0.25 \rightarrow 1$ $z_0 = 0.26 \rightarrow -\lambda$ $z_0 = 0.26 \rightarrow -\lambda$ $z_0 = 0.26 \rightarrow -\lambda$ $z_0 = 0.27 \rightarrow 2??$	
What's going on here?	•



In Jollowup work, he gave a more explicit obstruction.
We'll close with a discussion of this, since it is very much in the spirit of Arnol'd's proof from part 1.
"Braiding the attractor"
Consider a polynomial p(z):
Roots (P) C
Say we had a PIA Rp(=) that worked:
Roots(P): the attractor of RP.
Koots (P)

Now imagine we had one that worked in general We could take a loop Pa of polynomials. rational maps This would give is a loop of with a loop of attractors. Notice that this forms a braid. Recall from part 1: Given any braid, we can realize it as the loop of roots of Poly nomials.

McMullen shows that there are strong constraints on the kinds of braids that can arise us loops of attractors!
The constraint is roughly this
()) Theremust be some curve left invariant by (some powerof) the braid.
(For technical reasons, need >4 strands, tos)
But there are braids with no such fixed bops:
(Exercise!)
So if bur roots trace out this braid, you can thave a DIA along it!